1 Fig. 7 shows the curve $y={ }_{x-1}$. It has a minimum at the point P . The line l is an asymptote to the curve.

Fig. 7
(i) Write down the equation of the asymptote l.
(ii) Find the coordinates of P .
(iii) Using the substitution $u=x-1$, show that the area of the region enclosed by the x-axis, the curve and the lines $x=2$ and $x=3$ is given by

$$
\int_{1}^{2}\left(u+2+\frac{4}{u}\right) \mathrm{d} u
$$

Evaluate this area exactly.
(iv) Another curve is defined by the equation $\mathrm{e}^{y}=\frac{x^{2}+3}{x-1}$. Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y by differentiating implicitly. Hence find the gradient of this curve at the point where $x=2$.

2 Fig. 7 shows the curve defined implicitly by the equation

$$
y^{2}+y=x^{3}+2 x
$$

together with the line $x=2$.

Not to scale

Fig. 7
Find the coordinates of the points of intersection of the line and the curve.
Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y. Hence find the gradient of the curve at each of these two points.

3 Fig. 8 shows the curve $y=\mathrm{f}(x)$, where $\mathrm{f}(x)=\frac{x}{\sqrt{2+x_{2}}}$.

Fig. 8
(i) Show algebraically that $\mathrm{f}(x)$ is an odd function. Interpret this result geometrically.
(ii) Show that $\mathrm{f}^{\prime}(x)=\frac{2}{\left(2+x^{2}\right)^{\frac{3}{2}}}$. Hence find the exact gradient of the curve at the origin.
(iii) Find the exact area of the region bounded by the curve, the x-axis and the line $x=1$.
(iv) (A) Show that if $y=\frac{x}{\sqrt{2+x^{2}}}$, then $\frac{1}{y^{2}}=\frac{2}{x^{2}}+1$.
(B) Differentiate $\frac{1}{y^{2}}=\frac{2}{x^{2}}+1$ implicitly to show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 y^{3}}{x^{3}}$. Explain why this expression cannot be used to find the gradient of the curve at the origin.

